A Critical-exponent Balian-low Theorem

نویسنده

  • S. ZUBIN GAUTAM
چکیده

Using a variant of the Sobolev Embedding Theorem, we prove an uncertainty principle related to Gabor systems that generalizes the Balian-Low Theorem. Namely, if f ∈ H(R) and f̂ ∈ H /2(R) with 1 < p < ∞, 1 p + 1 p′ = 1, then the Gabor system G(f, 1, 1) is not a frame for L(R). In the p = 1 case, we obtain a generalization of the result in [BCPS].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Balian – Low theorem for the symplectic form on R 2 d

In this paper we extend the Balian–Low theorem, which is a version of the uncertainty principle for Gabor (Weyl–Heisenberg) systems, to functions of several variables. In particular, we first prove the Balian–Low theorem for arbitrary quadratic forms. Then we generalize further and prove the Balian– Low theorem for differential operators associated with a symplectic basis for the symplectic for...

متن کامل

Gabor Schauder Bases and the Balian–low Theorem

The Balian–Low Theorem is a strong form of the uncertainty principle for Gabor systems which form orthonormal or Riesz bases for L(R). In this paper we investigate the Balian–Low Theorem in the setting of Schauder bases. We prove that new weak versions of the Balian–Low Theorem hold for Gabor Schauder bases, but we constructively demonstrate that several variants of the BLT can fail for Gabor S...

متن کامل

A decay result for certain windows generating orthogonal Gabor bases

We consider tight Gabor frames (h, a = 1, b = 1) at critical density with h of the form Z−1(Zg/|Zg|). Here Z is the standard Zak transform and g is an even, real, well-behaved window such that Zg has exactly one zero, at ( 2 , 1 2 ), in [0, 1). We show that h and its Fourier transform have maximal decay as allowed by the Balian-Low theorem. Our result illustrates a theorem of Benedetto, Czaja, ...

متن کامل

Dilation of the Weyl Symbol and Balian-low Theorem

The key result of this paper describes the fact that for an important class of pseudodifferential operators the property of invertibility is preserved under minor dilations of their Weyl symbols. This observation has two implications in time-frequency analysis. First, it implies the stability of general Gabor frames under small dilations of the time-frequency set, previously known only for the ...

متن کامل

Modulation Spaces, BMO, and the Balian–Low Theorem

The modulation spaces M m (R ) quantify the time-frequency concentration of functions and distributions. The first main result of this paper proves embeddings of certain modulation spaces into VMO, the space of functions with vanishing mean oscillation. The second main result proves that the Zak transform maps certain modulation spaces on R into modulation spaces on R. These two results allow u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008